Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add filters

Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.07.14.23292656

ABSTRACT

Since the emergence of Omicron variant of SARS-CoV-2 in late 2021, a number of sub-lineages have arisen and circulated internationally. Little is known about the relative severity of Omicron sub-lineages BA.2.75, BA.4.6 and BQ.1. We undertook a case-control analysis to determine the clinical severity of these lineages relative to BA.5, using whole genome sequenced, PCR-confirmed infections, between 1 August 2022 to 27 November 2022, among those who presented to emergency care in England 14 days after and up to one day prior to the positive specimen. A total of 10,375 episodes were included in the analysis, of which 5,207 (50.2%) were admitted to hospital or died. Multivariable conditional regression analyses found no evidence for greater odds of hospital admission or death among those with BA.2.75 (OR= 0.96, 95% CI: 0.84 to 1.09), and BA.4.6 (OR= 1.02, 95% CI: 0.88 to 1.17) or BQ.1 (OR= 1.03, 95 % CI: 0.94 to 1.13) compared to BA.5. Future lineages may not follow the same trend and there remains a need for continued surveillance of COVID-19 variants and their clinical outcomes to inform the public health response.


Subject(s)
Death , COVID-19
3.
arxiv; 2023.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2303.05541v1

ABSTRACT

Several SARS-CoV-2 variants that evolved during the COVID-19 pandemic have appeared to differ in severity, based on analyses of single-country datasets. With decreased SARS-CoV-2 testing and sequencing, international collaborative studies will become increasingly important for timely assessment of the severity of newly emerged variants. The Joint WHO Regional Office for Europe and ECDC Infection Severity Working Group was formed to produce and pilot a standardised study protocol to estimate relative variant case-severity in settings with individual-level SARS-CoV-2 testing and COVID-19 outcome data during periods when two variants were co-circulating. To assess feasibility, the study protocol and its associated statistical analysis code was applied by local investigators in Denmark, England, Luxembourg, Norway, Portugal and Scotland to assess the case-severity of Omicron BA.1 relative to Delta cases. After pooling estimates using meta-analysis methods (random effects estimates), the risk of hospital admission (adjusted hazard ratio [aHR]=0.41, 95% CI 0.31-0.54), ICU admission (aHR=0.12, 95% CI 0.05-0.27), and death (aHR=0.31, 95% CI 0.28-0.35) was lower for Omicron BA.1 compared to Delta cases. The aHRs varied by age group and vaccination status. In conclusion, this study has demonstrated the feasibility of conducting variant severity analyses in a multinational collaborative framework. The results add further evidence for the reduced severity of the Omicron BA.1 variant.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Death
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.21.22281171

ABSTRACT

Objectives Sotrovimab is one of several therapeutic agents that have been licensed to treat people at risk of severe outcomes following COVID-19 infection. However, there are concerns that it has reduced efficacy to treat people with the BA.2 sub-lineage of the Omicron (B.1.1.529) SARS-CoV-2 variant. We compared individuals with the BA.1 or BA.2 sub-lineage of the Omicron variant treated Sotrovimab in the community to assess their risk of hospital admission. Methods We performed a retrospective cohort study of individuals treated with Sotrovimab in the community and either had BA.1 or BA.2 variant classification. Results Using a Stratified Cox regression model it was estimated that the hazard ratios (HR) of hospital admission with a length of stay of two or more days was 1.17 for BA.2 compared to BA.1 (95% CI 0.74-1.86) and for such admissions where COVID-19 ICD-10 codes was recorded the HR was 0.98 (95% CI 0.58-1.65). Conclusion These results suggest that the risk of hospital admission is similar between BA.1 and BA.2 cases treated with Sotrovimab in the community.


Subject(s)
COVID-19
5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.31.22275827

ABSTRACT

Purpose The Gamma variant of SARS-CoV-2, first detected in travellers from Brazil, was found to have high transmissibility and virulence; following this finding, this paper aims to describe the epidemiology of Gamma cases in England from its first detection on 12 February 2021 to 31 August 2021. Methods The demographic analysis of Gamma cases was stratified by travel exposure. Travel-associated cases were further analysed by countries travelled from, stratified by categories set in place by the Red (highest risk countries), Amber, Green (lowest risk countries) travel policy, which was implemented from May to October 2021. Results There were 251 confirmed Gamma cases detected in England in the study period. 35.1% were imported, 5.6% were secondary, and 29.5% were not travel associated. Early cases were predominantly travel-associated, with later cases likely obtained through community transmission. 51.0% of travel-related cases were travellers from Amber countries, and 40.2% had at least one Red country in their journey. Conclusion The Gamma variant has not seen the same expansion as other variants such as Delta, most likely due to Delta out-competing community transmission of Gamma. Findings indicate the travel policy requiring quarantine for Red and Amber list travellers may have also contributed to preventing onward transmission of Gamma.

6.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.15.22271001

ABSTRACT

Background The SARS-CoV-2 Omicron variant (B.1.1.529) has rapidly replaced the Delta variant (B.1.617.2) to become dominant in England. This epidemiological study assessed differences in transmissibility between the Omicron and Delta using two methods and data sources. Methods Omicron and Delta cases were identified through genomic sequencing, genotyping and S-gene target failure in England from 5-11 December 2021. Secondary attack rates for Omicron and Delta using named contacts and household clustering were calculated using national surveillance and contact tracing data. Logistic regression was used to control for factors associated with transmission. Findings Analysis of contact tracing data identified elevated secondary attack rates for Omicron vs Delta in household (15.0% vs 10.8%) and non-household (8.2% vs 3.7%) settings. The proportion of index cases resulting in residential clustering was twice as high for Omicron (16.1%) compared to Delta (7.3%). Transmission was significantly less likely from cases, or in named contacts, in receipt of three compared to two vaccine doses in household settings, but less pronounced for Omicron (aRR 0.78 and 0.88) compared to Delta (aRR 0.62 and 0.68). In non-household settings, a similar reduction was observed for Delta cases and contacts (aRR 0.84 and 0.51) but only for Omicron contacts (aRR 0.76, 95% CI: 0.58-0.93) and not cases in receipt of three vs two doses (aRR 0.95, 0.77-1.16). Interpretation Our study identified increased risk of onward transmission of Omicron, consistent with its successful global displacement of Delta. We identified a reduced effectiveness of vaccination in lowering risk of transmission, a likely contributor for the rapid propagation of Omicron.

7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.14.21267606

ABSTRACT

The Delta variant of concern of SARS-CoV-2 has spread globally causing large outbreaks and resurgences of COVID-19 cases. The emergence of Delta in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 Delta genomes from England in combination with 93,649 global genomes to reconstruct the emergence of Delta, and quantify its introduction to and regional dissemination across England, in the context of changing travel and social restrictions. Through analysis of human movement, contact tracing, and virus genomic data, we find that the focus of geographic expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced >1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers from India reduced onward transmission from importations; however the transmission chains that later dominated the Delta wave in England had been already seeded before restrictions were introduced. In England, increasing inter- regional travel drove Delta's nationwide dissemination, with some cities receiving >2,000 observable lineage introductions from other regions. Subsequently, increased levels of local population mixing, not the number of importations, was associated with faster relative growth of Delta. Among US states, we find that regions that previously experienced large waves also had faster Delta growth rates, and a model including interactions between immunity and human behaviour could accurately predict the rise of Delta there. Delta's invasion dynamics depended on fine scale spatial heterogeneity in immunity and contact patterns and our findings will inform optimal spatial interventions to reduce transmission of current and future VOCs such as Omicron.


Subject(s)
COVID-19
8.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1159614.v1

ABSTRACT

The Delta variant of concern of SARS-CoV-2 has spread globally causing large outbreaks and resurgences of COVID-19 cases. The emergence of Delta in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 Delta genomes from England in combination with 93,649 global genomes to reconstruct the emergence of Delta, and quantify its introduction to and regional dissemination across England, in the context of changing travel and social restrictions. Through analysis of human movement, contact tracing, and virus genomic data, we find that the focus of geographic expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced >1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers from India reduced onward transmission from importations; however the transmission chains that later dominated the Delta wave in England had been already seeded before restrictions were introduced. In England, increasing inter-regional travel drove Delta's nationwide dissemination, with some cities receiving >2,000 observable lineage introductions from other regions. Subsequently, increased levels of local population mixing, not the number of importations, was associated with faster relative growth of Delta. Among US states, we find that regions that previously experienced large waves also had faster Delta growth rates, and a model including interactions between immunity and human behaviour could accurately predict the rise of Delta there. Delta’s invasion dynamics depended on fine scale spatial heterogeneity in immunity and contact patterns and our findings will inform optimal spatial interventions to reduce transmission of current and future VOCs such as Omicron.


Subject(s)
COVID-19
9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.22.21266540

ABSTRACT

Background Household transmission has been demonstrated to be an important factor in the population-level growth of COVID-19. UK Health Security Agency (UKHSA) maintains data on positive tests for COVID-19 and the residential addresses of cases. We sought to use this information to characterise clusters of COVID-19 in multi-generational households in England. Methods Using cross-sectional design, cases of COVID-19 were assigned to clusters if they occurred in the same residential property in a 14-day rolling window. Patient demographic data were supplemented with reference to the ONS index of multiple deprivation and population density. Multi-generational households were defined as a cluster with at least three people, with one case in a person who was 0-16 years old and one case in a person who was [≥] 60 years old, with at least 16 years between two members of each age group. Results A total of 3,647,063 COVID-19 cases were reported between 01 April 2020 and 20 May 2021. Of these, 1,980,527 (54.3 %) occurred in residential clusters. Multi-generational households formed 1.5 % of clusters, with these more likely to occur in areas of higher population density and higher relative deprivation. Multi-generational clusters were more common among households of non-White ethnicity and formed larger clusters than non-multi-generational clusters (median cluster size 6, IQR 4-11 vs 3, IQR 3-4, respectively). Conclusion Multi-generational clusters were not highly prevalent in England during the study period, however were more common in certain populations.


Subject(s)
COVID-19
10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.22.21257658

ABSTRACT

Background: The B.1.617.2 COVID-19 variant has contributed to the surge in cases in India and has now been detected across the globe, including a notable increase in cases in the UK. We estimate the effectiveness of the BNT162b2 and ChAdOx1 COVID-19 vaccines against this variant. Methods: A test negative case control design was used to estimate the effectiveness of vaccination against symptomatic disease with both variants over the period that B.1.617.2 began circulating with cases identified based on sequencing and S-gene target status. Data on all symptomatic sequenced cases of COVID-19 in England was used to estimate the proportion of cases with B.1.617.2 compared to the predominant strain (B.1.1.7) by vaccination status. Results: Effectiveness was notably lower after 1 dose of vaccine with B.1.617.2 cases 33.5% (95%CI: 20.6 to 44.3) compared to B.1.1.7 cases 51.1% (95%CI: 47.3 to 54.7) with similar results for both vaccines. With BNT162b2 2 dose effectiveness reduced from 93.4% (95%CI: 90.4 to 95.5) with B.1.1.7 to 87.9% (95%CI: 78.2 to 93.2) with B.1.617.2. With ChAdOx1 2 dose effectiveness reduced from 66.1% (95% CI: 54.0 to 75.0) with B.1.1.7 to 59.8% (95%CI: 28.9 to 77.3) with B.1.617.2. Sequenced cases detected after 1 or 2 doses of vaccination had a higher odds of infection with B.1.617.2 compared to unvaccinated cases (OR 1.40; 95%CI: 1.13-1.75). Conclusions: After 2 doses of either vaccine there were only modest differences in vaccine effectiveness with the B.1.617.2 variant. Absolute differences in vaccine effectiveness were more marked with dose 1. This would support maximising vaccine uptake with two doses among vulnerable groups.


Subject(s)
COVID-19
11.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3802578

ABSTRACT

Background: The emergence of VOC202012/01 in England, known as B.1.1.7 or informally as the ‘UK variant’, has coincided with rapid increases in the number of PCR-confirmed positive cases in areas where the variant has been concentrated. Methods: To assess whether infection with SARS-CoV-2 variant VOC202012/01 is associated with more severe clinical outcomes compared to wild-type infection, genomically sequenced and confirmed variant and wild-type cases were linked to routine healthcare and surveillance datasets. Two statistical analyses were conducted to compare the risk of hospital admission and death within 28 days of test between variant and wild-type cases: a case-control study and an adjusted Cox proportional hazards model. Differences in severity of disease were assessed by comparing hospital admission and mortality, including length of hospitalisation and time to death.Results: Of 63,609 genomically sequenced COVID-19 cases tested in England between October and December 2020 6,038 were variant cases. In the matched cohort analysis 2,821 variant cases were matched to 2,821 to wild-type cases. In the time to event analysis we observed a 34% increased risk in hospitalisation associated with the variant compared to wild-type cases, however, no significant difference in the risk of mortality was observed. Conclusion: We found evidence of increased risk of hospitalisation after adjusting for key confounders, suggesting increase infection severity associated with this variant. Follow-up studies are needed to assess potential longer-term differences in the clinical outcomes of people infected with the VOC-202012/01 variant.


Subject(s)
COVID-19
12.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.16.21251625

ABSTRACT

ObjectivesNosocomial transmission was an important aspect of SARS-CoV-1 and MERS-CoV outbreaks. Healthcare-associated SARS-CoV-2 infection has been reported in single and multi-site hospital-based studies in England, but not nationally. MethodsAdmission records for all hospitals in England were linked to SARS-CoV-2 national test data for the period 01/03/2020 to 31/08/2020. Case definitions were: community-onset community-acquired (CO.CA), first positive test (FPT) <14 days pre-admission, up to day 2 of admission; hospital-onset indeterminate healthcare-associated (HO.iHA), FPT on day 3-7; hospital-onset probable healthcare-associated (HO.pHA), FPT on day 8-14; hospital-onset definite healthcare-associated (HO.HA), FPT from day 15 of admission until discharge; community-onset possible healthcare-associated (CO.pHA), FPT [≤]14 days post-discharge. ResultsOne-third (34.4%, 100,859/293,204) of all laboratory-confirmed COVID-19 cases were linked to a hospital record. HO.pHA and HO.HA cases represented 5.3% (15,564/293,204) of all laboratory-confirmed cases and 15.4% (15,564/100,859) of laboratory-confirmed cases among hospital patients. CO.CA and CO.pHA cases represented 86.5% (253,582/293,204) and 5.1% (14,913/293,204) of all laboratory-confirmed cases, respectively. ConclusionsUp to 1 in 6 SARS-CoV-2 infections among hospitalised patients with COVID-19 in England during the first 6 months of the pandemic could be attributed to nosocomial transmission, but these represent less than 1% of the estimated 3 million COVID-19 cases in this period.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Communication Disorders
SELECTION OF CITATIONS
SEARCH DETAIL